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SPECTRAL AND SPECTRAL-ELEMENT METHODS

Abstract

This is an introduction to spectral and spectral-element methods

for the numerical simulation of incompressible and compressible hydro-

dynamics. The theory behind the methods is presented as well as some

examples of working codes. The work is reasonably self-contained in

that there is included a discussion of numerical quadrature, weighted

residual methods, Fast Fourier Transforms and time marching schemes.

The work is based on a set of lectures by the author for the NASA

Summer School for High Performance Computational Physics, held at
Goddard Space Flight Center.



SPECTRAL AND SPECTRAL-ELEMENT METHODS 111

Contents

SPECTRAL METHODS 1

1.1 Introduction ............................ 1

1.2 Spectral Methods for Solution of PDEs ............. 2

1.3 Gaussian Quadrature ....................... 3

1.3.1 Lobatto Integration ................... 10

1.3.2 Sturm-Liouville problem ................. 10

1.3.3 Summary of Basis Function Properties ......... 11

1.4 Method of Weighted Residuals ................. 13

1.5 The Fourier Basis and the FFT ................. 20

1.5.1 Aliasing .......................... 21

1.5.2 Differentiation ...................... 23

1.5.3 The Fast Fourier Transform ............... 23

1.5.4 The Pseudospectral Method ............... 24

1.5.5 The ddcon2d Code .................... 24

1.6 Temporal Discretization ..................... 28

1.6.1 Some Standard Time Stepping Schemes ........ 31

SPECTRAL ELEMENT METHOD

2.1

2.2

2.3

2.4

2.5

2.6

34

Introduction ............................ 34

Convergence Character of SEM ................. 37

Multidimensions ......................... 38

Time Splitting for Navier-Stokes ................ 38

Memory Requirements for SEM ................. 39

Nonconforming SEM ....................... 39



iv SPECTRAL AND SPECTRAL-ELEMENT METHODS

2.7 Direct Stiffness Summation ................... 39

2.8 Static Condensation of Matrices ................. 41

SPECTRAL-ELEMENT FLUX CORRECTED TRANSPORT

METHOD FOR COMPRESSIBLE FLOWS 41

3.1 Application to Hyperbolic Conservation Laws ......... 42

3.2 Spectral Element Discretization ................. 42

3.3 Flux Corrected Transport .................... 44

3.4 Shock Tube Results ....................... 46

STABILITY OF NUMERICAL SCHEMES 48

4.1 Von Neumann Stability Analysis ................ 48

5 READING GUIDE 51



SPECTRAL AND SPECTRAL-ELEMENT METHODS

List of Figures

1

2

3

4

5

Stability region of the Leap-Frog scheme on the wave equation 31

A-Stable region .......................... 33

Spectral element discretization ................. 34

Conforming vs. nonconforming spectral element discretization 40

The nodes for the Gauss-Chebyshev points (dashed lines),

used for the cell-averaged quantities, and the Gauss-Lobatto-

Chebyshev points (solid lines), used for edge quantities, for
N --- 9 ................................ 43

(a) The function a(x) = sin27rx and its cell average, _(x),

and (b) The error in the reconstruction from _(x) for N=32. 45

Shock tube results. Time is 0.263, N = 21, K = 20. Param-
eter are those due to Sod ..................... 47



vi SPECTRAL AND SPECTRAL-ELEMENT METHODS

List of Tables

Error in the solution of Ou Ou Reproduced from Canuto
Ot -- Ox"

et al ................................ 2

Spectral methods applications .................. 3

Legendre and Chebyshev polynomials as eigenfunctions of the

Sturm-Louiville problem as defined here ............. 11



SPECTRAL AND SPECTRAL-ELEMENT METHODS

1 SPECTRAL METHODS

1.1 Introduction

These lecture notes evolved from slides presented as part of some lectures

on spectral and spectral-element methods to gradute students attending the

NASA Goddard Space Flight Center's Summer School in High Performance

Computational Physics. They should give the reader a very introductory

feel for the subject. Far from being exhaustive they are incomplete even as

a robust introduction. Nevertheless the material presented here is, to this

author's knowledge_ not available in a single place_ being spread over various

books and articles. A reading guide to the these is included at the end.

The lectures as presented in the summer school also included many results

from large-scale simulations based on spectral and spectral-element methods

illustrating the power and practice of these methods. These have not been
included in this set of lecture notes. Also not included is a discussion of

parallelization issues. These omissions will, it is hoped, become remedied at
a later date in a revised version.

The Fourier basis is the most commonly encountered basis set of orthogonal

expansion functions. In later sections, when we talk of other basis functions,

such as Chebyshev and Legendre functions, the Fourier basis will guide our

intuition. The reader is presumably familiar with the wide scope of appli-

cation that they have enjoyed in the physical sciences. In these lectures we

are concerned with the solution of partial differential equations by spectral

methods, particularly those equations that arise in fluid dynamics.

At first it may not be apparent why Fourier basis are at all relevant in

fluid dynamics problems. We are familiar with the phenomenon of turbu-

lence. This much studied problem is often discussed using the jargon "power

spectrum'_ "wavenumber'_"wavenumber space'_ "triad interactions'_ "pdf"

(probability distribution function) etc. In fact these terms refer to the rep-

resentation of the flow in the Fourier basis. How is it though that a basis

set that is periodic in nature can be such an important tool in the represen-

tation of the (spatial) flow when there are boundaries present? Certainly

homogeneous turbulence can be so represented_ but most flows are not ho-

mogeneous, since they possess boundaries. The reason why the Fourier basis

and homogeneous turbulence continues to be important is because at high
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Reynolds numbers, the flow away from the boundaries does not "feel" the

presence of the boundaries. Thus small regions of within the domain con-

tain enough range of scales so as to treatable as periodic without too much

error. Naturally when dealing with the flow near boundaries, an expansion

in another, non-periodic basis becomes necessary.

In numerical analysis one encounters the Fourier basis again. In the Von-

Neumann stability analysis (see Chapter 3) it is convenient to talk of dif-

ferent wavenumbers being damped. This convenience arises because of

Fourier's theorm. Again, when looking at the behavior of schemes with

boundary conditions involved such convenience must be dropped for stabil-

ity analysis based on matrices.

1.2 Spectral Methods for Solution of PDEs

For smooth flow -- flows that do not have shocks or sharp fronts, spectral

methods provide high accuracy and exponential convergence to the soulu-
tion.

Consider Table 1.2 where a comparision is made between a Fourier method
and finite differences.

N Fourier-Galerkin
8 9.87 x 10-2
16 2.55 × 10 -4

32 1.05 ×10 -11

64 6.22 ×10 -13

128

2FD
1.11

6.13×10-1
1.99×10-1
5.42×10-2
1.37×10-2

4FD
9.62×10-1
2.36×10-1
2.67×10-2
1.85×10-3
1.18×10-4

Table 1: Error in the solution of o_u_ o_u Reproduced from Canuto et al.Ot -- Ox"

For a fixed error, determined by how accurately one wants the solution, say

of the order of 10 -4, according to the table one needs a smaller number of

grid points, N for spectral solution. Although the table is shown for Fourier

method, the essential result is the sam for Chebyshev, Legendre or other

basis (provided the basis chosen is suitable for the boundary conditions).

The conclusion to be drawn from this is that any method which has these

accuracy and convergence properties is obviously of interest.

Many key problems have been solved using spectral techniques, in hydrody-
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namic stability, transition and turbulence.

Table 2 summarizes these calculations and cites the key references.

Domain Physics Investigators
Box

Box

Box

Box

Box

semi-infinite

cylinderical
semi-infinite

sphere

homogeneous turbulence
sheared turbulence

channel flow

Magnetohydrodynamics (MHD)
convection

boundary layers

Taylor-Couette

shear layer

Earth core, mantle

Orszag

Wray, Rogallo,Moin, Kim, Herring
Orszag, Patera, Moin, Kim

Orszag, Tang, Matthaues, Dahlburg

Orszag, Herring

Spalart, Zang, Hussaini

Streett, Marcus

Orszag, Riley, Metcalf

Glatzmaier, Tackley

Table 2: Spectral methods applications

Three problems arise for spectral methods. Spectral methods are restricted

to:

1. Simple geometry. Although variety of boundary conditions, and

variable coefficients can be handled (well) the restriction to simple

geometries is irksome. Solved by domain decomposition and Spectral-

Element methods.

2. Smooth flow. Gibbs phenomena associated with the representation

of discontinuities. Solved by filters and spectral- FCT methods.

3. Parallelization. Spectral transforms are communication intensive.

Solved by Spectral-element methods.

1.3 Gaussian Quadrature

There is a unique N-th order polynomial through N + 1 points, called the

interpolating polynomial.

One could compute it via:

N

akx k = f(xi)
k=O

i = O, 1,...N,
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provided the Vandermonde determinant, Ix/k] ¢ O. But this is inefficient.

Instead compute it via:

(a) Newton's divided differences

f(x) .._ p(x) = f(xo) + (x- xo)f[xl, xo] + (x- xo)(x- xl)f[x2, Xl, xo] +R(x)

where

and

and

f[xl,xo] =

f[x2,xl,xo] =

f(xl) - f(xo)

X -- X 0

f[x2, xl] - f[xl, xo]

X2 -- XO

t_(X) = (X -- Xo)(X -- Xl)(X -- x2)f[x, x2, Xl, XO]

is error term.

(b) Lagrange Interpolation

(X--XO)(X--Xl)...(X--Xi-1)(X--Xi+I)...(X--XN)

pi(x) = (Xi -- XO)(Xi -- /1) ''' (Xi -- Xi-1)(Xi -- /i+l) ''' (Xi -- XN)

or

pi(x) =
(X -- Xi)OZ'(Xi)

i = O, 1,...N

Thus

N

P(x) = _pi(x)f(xi
i=0

N oe(x),, ,f(xi)P(x)=Z(x - xi)o_ txi)i=0
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is the Lagrange Interpolating Polynomial of degree N.

Note that pi(xi) = 1 and P(xi) = f(xi)

and a(x) = (x - xo)(x - xl) ... (x - XN) is of degree (N + 1).

Suppose we want to evaluate

b f (x')w( x')dx'

where w(x I) is some "weight" function.

b-a b+a
X I z --X _ --

2 2

By the transformation

leads us to consider only:

11f (x)w(x)dx

Because of the availability of this transformation, from now on we need

consider only the interval [-1,1].

Let this integral be

N

_ f(x)w(x)dx = _ aif(xi)
1 i----0

where xi are the points where f (x) is evaluated, and ai are some coefficients.

Number of unknowns is:

N+ 1 ai

N+ 1 xi

1 N itself

or 2N + 3 unknowns. Let
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f(x) = P(x) + r(x)

where P(x) is an N-th degree polynomial.

If we take

Then

N C_(X),, ,f(xi)P(x)=Z(x - xi)a txi)i=0

.(x)  (x)dx
= f(xi) (X -- Xi)OZ'(Xi)

1 i--0

v'f( N .(x)
w(x)dx

A-'_"_Xiz J- (X Xi)Ozl(Xi)
i----0 1 --

N

= E aif (xi)
i=0

If we take xi = xo + iAx (equally spaced points), we get the Newton-Cotes

formulae (e.g. the familiar Simpson's rule). But if xi are not equally spaced,

then we obtain an important result:

Newton-Cotes formulae are exact (at x = xi) for polynomials f(x) of degree

N. But if xi are such that they are Gauss points, ie. zero's of the (N +

1)-th order polynomial c_(x) constructed such that it is orthogonal to all

lower degree polynomials makes the integration exact for f(x) polynomial

of degree up to 2N + 1.
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So

f _(x)q(x)_(x) = o
1

a orthogonal to q(x) E 7)<N

Let

f(x) • T__<2N+I

f(x) p(x)
-q(x)+--

_(x) _(x)

Here p(x) and q(x) are 7)<_N, while a(x) is _O__N+ 1. This is a standard result

known as the Division Theorm of polynomials.

This can be written

f (x) = _(x)q(x) + p(x)

Integrating over interval

la(x)q(x)w(x)dx + p(x)w(x)dx
1

The first term on the RHS drops out because of the assumed orthogonlity.

Since p(x) is P<N

N

f_ _(x)_(x)dx = Z ai_(xi)
1 i----O

is exact.

Now

f(xi) = _(xi)q(xi) + p(xi)

the first term is zero because a(xi) = 0 leading to
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N

_ f(x)w(x)dx = _aif(xi)
1 i=0

Hence by arranging our quadrature points we are able to represent polyno-

mials of degree 2N + 1 exactly.

Now we make the identification

OZN+I(X) -- LN+I(X) Legendre

aN+l(X) _TN+I(X) Chebyshev

OZN+ 1 (X) ---- HN+ 1 (X) Hermite

i.e. If we choose the xi to be the zeros of these polynomials then we obtain

Gauss-Legendre, Gauss-Chebyshev or Gauss-Hermite integration.

e.g. Gauss-Chebyshev:

1

_(x) - v_ - x2

leads to

N

t f(x)w(x)dx = _aif(xi)
1 i=0

N T(x)
P(x) = _ (x__xi)T,(xi)f(xi)

i=0

1 T(x) w x
ai = _-1 (x-_i)T'(xi) ( )
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Recall

ai = --,l _w(x)
1 (x - xi)_ _xi)

Consider Gauss-Legendre a --+ LN

w(x) = 1

Therefore

_ LN(X) .ai = - _----_TYrl ax
1 (X -- xi)nN(Xi)

(Here L_v refers to the derivative).

The Christoffel-Darbour identity is:

N

(x- x') Z Pk(x)Pk(x')- ON
ON+I

k=O

[PN+I (X)PN (X') -- PN (X)PN+I (X')]

Here P are orthonormal.

At x I = xi, where xi are zeros of PN, so,

PN(xi) = O.

We have

N

Z Pk(x)Pk(xi)=
k=O

ON PN(X)PN+I(Xi)

ON+ 1 (X -- Xi)

ON is the coefficient of x N in PN (x).

Multiply by w(x) and integrate over the interval,
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1 N

f Z Pk(x)Pk(x_)_(x)-
1 k=0

ON 1 PN(x)PN+l(Xi)w(x)d x
ON+I _-1 (X -- Xi)

N 1

Z Pk(x_)f Pk(x)_(x) -
k=0 1

ON PN+I(Xi) fl pN__(x)w(X)dx

ON+I J-1 (x -- xi)

The LHS is 1 if k -- 0 and 0 if k _ 0 (orthonormality of PN).

Hence

(_)N
1-

(_)N+I (x - xi)

Thus

PN(X) , ,.a i = 1(x -_(xi) _tx_ax

1 1

- P_(xi) ]-1 (xP_(x)-x_)_(x)_x

ON+I 1

ai = ON P[v(xi)PN+l(Xi)

for Legendre polynomials, orthonormality gives

__2 1 (2N)!
ON= -- 2N---_._) 2

2n+1
(Note, L(x) = _L(x))

Hence
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Also:

ai z
(N + 1)L'(xi)LN+l(Xi)

(1 - x2)LIN(X) = (N + 1) [xLN(x) -- LN+I(X)]

for x ---- x i

(1 - x2)LIN(Xi) = (N + 1)[xiLN(xi) -- LN+I (xi)]

or

(1 - x_)
LN+I(Xi)- -N--_I LIN(Xi)

ai z

(1-- x_) [L_N(Xi)] 2

which is what is given on p13 with N --+ N + 1.

1.3.1 Lobatto Integration

Unfortunately all of the zeros are in the interior of [-1,1]. So to include

these points (for purposes of applying boundary conditions) we must choose
as nodes

--1, XO, Xl, ... XN-2, +1

and thus calculate exactly f(x) E P2N-1. This is Gauss-Lobatto Integration,

leading to Gauss-Legendre-Lobatto Integration, Gauss-Chebyshev-Lobatto

Integration, etc.

Should we have included only one of the extremal points we would have

integration associated with the name of Radau.

e.g. Gauss-Legendre-Lobatto, w(x) = 1
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N-1

l f(x)dx = a0f(-1) + aN f(1) + _ aif(xi)
1 k=0

Number of unknowns (N + 1) ai and (N- 1) xi leading to 2N unknowns.

Hence we can make the formulae exact for f(x) E P2N-1. Since this is

true for all f(x) E P2N-1, choose f(x) = xi i = 0, 1,... and get the 2N

equations

ao + al + a2 + ... aN = dx = 2
1

-ao + alx + a2x2 + ... aN = xdx = 0
1

__ 2ao -t- alx 2 -t- a2x 2 +...aN = x2dx = -
3

etc.

Solving these will give us the Gauss-Legendre-Lobatto zeros and coeffi-
cients.

1.3.2 Sturm-Liouville problem

Legendre and Chebyshev polynomials are examples of Jacobi Polynomials

which are eigenfunctions of the singular Sturm-Liouville problem:

dx p(x) +q(x)u = Aw(x)u on[-1,1]

Here p, q, w are real and w(x) is a "weight".

The singular problem is when p(+l) = 0

w(x) = (1 - x)a(1 + x) z
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1

a=O a=3=_
Legendre Chebyshev

A -k(k+l)

p(x) 1 - x 2

q(x) o
w(x) 1

_k 2
1

(1-x2)_
0

1

(1-x2)_

Table 3: Legendre and Chebyshev polynomials as eigenfunctions of the

Sturm-Louiville problem as defined here.

1.3.3 Summary of Basis Function Properties

LEGENDRE

Lo(x) = 1, LI(x)= x, L2(x)= 1(3x2 - 1),L3(x)= 1(5x3 - 3x2),
Z Z

1
L4(x) --- _(35x 4 - 30x 2 + 3)

Orthogonality
1 1

_1 Lk(x)Ll(x)dx -- /-;:---:_(_kl

Recurrence

2k+l T _ k
Lk+l(X) = -_--_x_k[x) k + 1Lk-l(x)

Gauss-Legendre

X i zeros of LN+I, Wi z

(1-x_) [L_v+l(Xi)]

2, i--- 0,1,...N

Gauss-Legendre-Lobatto

XO=--I, XN=I, xizerosofL_v , i=0,1,...N-1
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2 1
i = O, 1,...NWi

N(N + 1) [LN(xi)] 2

Differentiation

c_ c_

If u = E 5Li, u'= E _!l)Lit

i=0 i=0

c_

where %tl 1) = (2/-_ 1) E UP
p=i+lp+iodd

Interpolation (GLL)

Pi(x) = 1 (1 - x2)L_N(X)

N(N + 1)LN(xi) (x -- xi)

CHEBYSHEV POLYNOMIALS

To(x) = 1, Tl(x) = x, T2(x) = 2x 2 - 1, T3(x) = 4x 3 - 3x,

T4(x)=8x 4-8x 2+1

Orthogonality

ft Tk(x)Tl(X) dx = CkSkl2,1

Recurrence

Gauss-Chebyshev

whereCk=2, k=0andCk=l,k_>l

TN+I(X) = 2XTN(X) --TN-I(X)

(2i + 1)Tr 7r
_i z COS W i --

2N+2 ' N+I

Gauss-Chebyshev-Lobotto
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7d 7r

xi =cos_, wi-- 2N i=O, 1,...N,
7T

wi = -_i < i < N-1

Differentiation

If u ----E 5Ti, u'---- E %t!l)Ti where %t}1)= -- E p%tp

i=0 i=0 z ' Ci p=i+l

p+i odd

Interpolation (GCL)

Pi(x) = (-1) i + 1(1 - x2)T_N(X)

CiN2(x - xi) 5i=2 i=oCi=l i#O

1.4

Consider

Method of Weighted Residuals

N

_x(x,t) = Z ai(t)¢(x)
i=0

Here ai are the expansion coefficients, ¢ are the trial or expansion functions

Then
O%t N

RN- Ot D(UN)

is the Residual.

The Method of Weighted Residuals is to minimize the residual by

iab RNCj(x)dx = 0 j = O, 1,... N
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The Galerkin method follows when ¢(x) - ¢(x) and they satisfy the bound-

ary conditions. The Collocation Method follows when ¢(x) -- 6(x), and the

Tau method follows when ¢(x) - ¢(x) but they do not satisfy the boundary
conditions.

Galerkin Example: Fourier Galerkin

Ou Ou

Ot Ox
on = [0, wave equation

_)k(X) : e ikx

MWR impies

1 -ikx
Ck(X) = _e

li0  [£ ]27r (i_k - ikak)e ikx e-ilXdx = 0

dak

dt
-- - ikak = O k = O, 1, . . . N

These N + 1 equations can be solved using any reasonable time integration
scheme.

Another example

_72%t z f

with u=0 on0_t

Ck (x) = Tk (x) -- To (x) k even, Tk (x) -- T1 (x) kodd
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We could also use Legendre.

N

?£N = E aklCk

/=0

/ V2UNCklW(X, y)dxdy = / f Cklw(x, y)dxdy

Rest is algebra.

Collocation Example Chebyshev

O_ 02

Ot Ox 2 u(+l, t) = 0 diffusion equation

¢(x) =T k(x) k=O, 1,...N

N

?£N(X,t) : E ak(t)¢(x)

k=0

¢j(x)=_(x-xj)

here Xj are collocation points.

MWR implies

or

OUN 02UN
Ot OX2 Ix=x_ = 0

j = 1,2,...N

027_N ]

Ox2j ¢j(x)dx = o

j = 1,2,...N +B.C.
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02UN
Choose xj = cos _, and note Ck(xj) = cos _. Use FFT to find ---5-_xlX=X¢.,

C_2?_N N

-- _ a_2)(t)Tk(x)
k=0

So

N a_2) 7cjkO_NIx=x_= Z cos-
Ot N

k=O

Another Collocation example

_2_t

-uO-_-yx2 + u = f x E [-1, 1] Helmholtz equation

u(-1) = c_, u(1) = _ boundary conditions

Let

N

k--0

Chebyshev

7rj
_tj ---- COS N

O2_tN l

RN(xj) = -.--sj_xj_ + _N(xj) - f(xj)

MWR: Residual is zero at xj

O2_t N N

Ox2 (xj) = Z d_j_(x)
/=0
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Recall

N

/=0

19

_5_1) 2 N
= _-k Z p_tp

p=k+l

p+kodd

But

SO

and

_'N(X_)= Z _ Zp_p T_(x_)
k=0 P

_P - epN .=

N

?£1N(Xi ) Z "(1) (?£j ?£N(Xj))= aij uj =

j=0

N

= aij uj.

j=o

So returning to the example, we obtain:

--1/Z dJ l_tN(xl) -'_ _tN(Xj ) -- f(xj) = 0
/=0

j = 1,2,...N-1

UN(--1) = OZ UN(1) = /3
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This algebraic system of equations has the N- 1 unknowns, UN(Xj),

1,2,...N- 1.

Yet another Collocation example.

Ox \ Ox ] = f x E [-1, 1] variable coefficient example

with boundary condition

u(±l) = 0

k = 1,2,...N- 1

Collocation implies

J_IN (J_UN(Xk)) = f(xk)

j z

_N(XO)= _N(XN)= 0

Where IN is the Chebyshev or Legendre interpolation operator on the xk

points.

Tau method example

Ou Ou

Ot Ox

with boundary conditions

_(x,o) = _(x)

x e [-1,1]

u(1, t) =/3(t)

N

_x = Z ak(t)Tk(x)
k=0

As we have done before in the Galerkin example with the same equation but

different boundary conditions, we will obtain equations
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But also have

dak
-- Aklal k,l =O, 1,...N (1)

dt

N

ak(t)Tk(1) = fl(t) (2)
k=O

Noting that the u(x, 0) = c_(x) since initial condition is no problem, initial

values of coefficients can be taken as Chebyshev coefficients.

Essence of the Tau method is to drop one of the equations in (1) and satisfy

(2)

What is to guide the choice of which equation in (1) to discard? For Cheby-

shev polynomials note that a derivative reduces order. Therefore equating

terms of same Tk (or equivalently, invoking orthogonality) will lead to de-

ficiency for aN if only 1st derivative occurs, etc. In our example da___mN_ O,dt --

because we have a 1st derivative (in x). Hence we can safely discard this

equation for (2).

Another Tau example 1

d2_t

_-_x2-Au=f x e [-1,1]

u(--1) =c_ u(1) =/3

N N

= Z akTk(x), fN(X) = _ raTa(x)

MWR implies

k=O k=O

1 This example is due to R. Peyret.

f N(x)Tk(x)w(x)dx k = O, 1,...N-1
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or

k = 0, 1,...N- 2

N N

k=0 k=0

Which is a total of N equations.

The system (1) has

Ck p=k+2

p+k even

Hence looks like

Ck p=k+2

p+k even

k = 0, 1,... N- 2

-4- 2 equations for boundary conditions. Written out this is (u = 1):

fo = -½_o +-z-2(22)_2 +_(_-_-_)_
fl = --)kZ_l +3(32 -- 1)_g3 +5(5 2 -- 1)u5

f2 = -- _- _2 +4( 42 -- 22)_4

f3 : --)x_3 5( 52 -- 32)_5

This is of form LU = F where L is upper triangular. But solving it this way

is inefficient (O(N 2) operations). Instead, note the alternating zeros. There-

fore we can uncouple odd and even modes. [In between apply complicated

recurrence relation to obtain qusi-tridiagonal system.]

The boundary conditions look like

_0 -- _1 -'[- _2 "'" _N = OZ
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_0 -[- _1 -[- _2"'" _N : /3

Adding and subtracting

_0 -J- l/'2 -J- "'" _N --
(_ + Z)

_1 "_- _3 "_- "'" _N-1 --

So that two systems need to be solved•

MeUe = Fe

and

Mof]o = Fo

_2

_ff e = _4

_3

gro = _5

M_,o =

1 1 1 ... 1 I

X X X •

• X X X

X X X

X X
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1.5 The Fourier Basis and the FFT

There are two conventions prevalent for defining the Fourier transfom. The

Physical sciences convention ( Press et al. , Mathematica),

Physical

Uj ---- 1 _k=0N-1 _tke-i2_rkj/N

Here 5k are the Fourier coefficients and uk and 5k are reffered to as Fourier

transform pairs.

and the Engineering convention (Canuto et al. , Strang, Temperton),

Physical

N-1 _tkei2_rkj/NUj : Ek=0

Spectral

5k = 1 EN_-oI uie-i2_rki/N

Fourier transforms are appropriate for periodic systems. They satisfy the

orthogonality condition,

N-1

1 . {
j=O 0

withxj=_ j=O, 1,...N-1

Note that

1 p=Nm re=O, 1,...

p # Nm re=O, 1,...

N-1

= Z ekeikx
k=0

is an N/2 degree trignometric interpolant of u. i.e.

±Nu(xj) = u(xj)

It is of degree N/2 because u and _ are complex here.
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An important point to note is that this is different from truncating the

(infinite) Fourier series representation of the function,

O_

_(x)= E a_ei_x
k------_

if we truncate this,

_(x) =  j2_l )Z akeikx = Z akeikx see below
k=-N/2 k=o

ak # _k

1.5.1 Aliasing

The _k can be expressed in terms of the ak as

O_

_t k zak + Z ak+Nm

m=-oc

k=O, 1,...N- 1

To see this consider

c_ N/2-1

_= Z ap_ipx, _N= Z _x
p=-c_ k=- N/2

(3)

O0

U(Xj) = UN(Xj) = Z aPeipxj =
pz -- (2_

N� 2 - 1

Z _tkeik x

k=-N/2

--_2 c_ ) N/2-1 N/2-1
k,P =-oc p=N/2 p=- N/2 k=- N/2

_tk eikx
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Qm_=__ akq_ N e (kq-N ) 3 , I N/2--1 N/2--1
k=--N/2 ..... N/2--1 -Jr- Z aPelPaJ = Z _tkelka

p=--N/2 le=--N/2

but e i(k+Nm)xj = e ikxj, and hence term by term equality leads to (3).

We have generally "slid" the wavenumber limits to range from k -- 0,..., N

rather than from k = -N/2,...,N/2 - 1 because of this aliasing. The

coefficients from N/2 to N- 1 are the same as those from -N/2 to -1.

Now (3) can be thought of as

INU = PNU -_-RNU

Where IN is the interpolating operator, PN is the projection operator, and

RN is the aliasing error operator.

Thus the (K + Nm)-th frequency aliases the k-th frequency on the grid. On

the xj nodes _)k+Nm(Xj) : _)k(Xj)

Also note

Ilu - 1Null2 = Ilu - PNull2 + IIRNull2

or

interpolation error = truncation error + aliasing error

Thus interpolation error is always greater thatn the truncation error. Asymp-

totically however both errors are of the same order and decay at the same

rate. Thus Galerkin and Collocation methods have similar approximation

errors.

Fourier coefficients decay with k in the following manner.

for u E C m (u is m times differentiable)

ak=O(k -m) j=0,1,...N-1

So for C _ functions, the k-th coefficient decays faster than any algebraic

power of ¼. Because of relationship between _k and ak, a similar statement

is true for _k-
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1.5.2 Differentiation

In transform space

Hence

N

ul = E ikakeikX
k--0

(PNU)' = PNU'

This means that truncation and differentiation commute for Fourier basis.

In physical space

DNU = (INU) 1

DNU _ 7)NU '

so that

(INu)' _ INu'

Interpolation and differentiation do not commute. But it is found that the
collocation differentiation error

(INU)' -- INU' .._ O(u' -- PNU')

where the RHS represents the trunucation error of the derivative.

Hence is spectrally accurate.

1.5.3 The Fast Fourier Transform

If we write
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02 z e-2_ri/N

then
1 N-1

j=O

where w is a matrix and uj is a vector. A direct calculation would take
O( N 2) operations.

But with the discovery of the FFT, this can be considerably reduced.

N-1 N-1

E cojkuj = E e-27rijk/NuJ

j =0 j =0

N/2-1 N/2-1

E e-2_ri(2J)k/Nu2j + E

j =0 j =0

e-2_ri(2j+l)k/No
u2j+l

or

N/2-1 N/2-1

E e-2_rikj/(N/2)+02k E

j =0 j =0

e-27rikj/(N/2) U2j+ 1

where u_ represents even modes of length N/2 and u_ the odd modes of

length N/2. This process can be repeated over and over until one is left

with a very short vector lentgh when it makes sense to simply do the matrix

multiply. This recursive nature leads to an algorithm that takes O(NlnN)

operations.
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1.5.4 The Pseudospectral Method

1.5.5 The ddcon2d Code

ddcon2d 2 solves the two-dimensional Navier-Stokes equations for Boussinesq

convection by Fourier Galerkin + Collocation method. The system models

double-diffusive convection in which two agents (e.g. heat and a solute) have

opposing contributions to the bouyancy and diffuse at different rates. The

problem is of relevance to oceans (heat + salt) and mixing in stars (heat

+ angular momentum, heat + concentrations etc.) It has been studied

extensively in the laboratory, under different guises. The current set up

models the occurence of various waves (standing and travelling convection

waves)

The equations are

V-u = 0 (4)

Oui 1

(u × _)i = -V(p + _lu21)+ _(T + S)5i3+ _V2u_
Ot A

(5)

0T

O----t+ u. VT = RTW + V2T (6)

OS

O---t+ u. VS = -Rsw + _-V2S (7)

The second term on the RHS of (5) is the bouyancy term, w is the vorticity.

The velocity, u = {u, w}. RT and Rs are the thermal and solutal Rayleigh

numbers,
07" 4

RT --9°_-5-_h
l/t_ T

OS -4

R s - gc_-5-_n
llt_ S

2The code may be obtained

http://sdcd.gsfc.nasa.gov/ESS/deane.html.

from my web site at
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is the Prandtl number, and

_- = _T/_S _ I

The "opposing contribution" reffered to in the previous paragraph is seen

in the sign of the RTW, Rsw terms. One other dimensionless parameter is

a the aspect ratio of the domain.

We write

1

- NxNz  eikx2"x/Xx cos( kz /Nz)
kxkz

j._ 1
NxNz _ Teik_2_x/N_ sin(Tckzz/Nz)

kxkz

NxNz _ Seik_2_x/Nx sin(Tckzz/Nz)
kxkz

1

@ - NxNz _ weik_2_x/N_ sin(Tckzz/Nz)
kxkz

Take V× (5) and apply (4) to obtain

0 2 OT OS

Oxi _i

1
where q = p + _lul 2 and denote (u × w)i by (i-

Fourier transforming

so that
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1 (-iki_i - iaki(T + S)5i3)

Fourier transform (5), (6),(7) we obtain

0

OT
Ot
-- + _ ._T = RT_ -- Ikl@

aS
Ot
-- + _._s = -Rse - _Iki_s

In pseudospectral method evaluate nonlinear term in physical space (collo-

cation) rest in spectral space (Galerkin).

We use a leap-frog method for time integration.

_n+l _ _n-1

2At
z _)NL

for the nonlinear term, represented by _)NL.

And we use Crank-Nicolson for the diffusion term.

_tn+l _ _tn-1

2At

Discrete equations are

2At

1 _.-,2 n+l vun- 1)
=_[v u +

- _ = iki_ _ + _(t _ + S_)_i3 - 1_[k[2(_2_ +1 - _i^n-1)

T/n+1 __ T/n-1

2At

A 1
= _ -T i )+iki(_.T)? RTW _ _lkl2¢_ +1 ^n--1
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Let

s?+l_s?-i
2At

2 ^n+l- -s_ )+ ik_(_.s)? = -Rs_ _ -_

&i = un-*( 1 - alkl 2At) + 2At_ n + 2crAt( _n + sn)si3

so that

1

_n+l( 1 + aAtlkl 2) = &i - [-_[2ki(k" &)

since ki • ui = 0 (from continuity).

Therefore the numerical iteration is

dx = _tn-l(1 - _/Xtlkl_)+ 2/xtC_

dz = @n-l(1 - _/Xtlkl 2) + 2/xt_F + 2/xt_(T _ + s_)

[_x - k k...(__2_1
_.,+1 = _ x ikl._/

(1+ o-_tlkl_)

[&z - k k...(__2_1
@n-k1 = _ z Ik? /

(1 + _AtlkF)

r_nq-1 = 2AtRT wn -- i2DT(k . _-_n)

(1 +/XtlkF)
(1 -/Xtlkl2)T _

+ (1 7/XtlkF)

snq-1 = -2AtRs wn - i2DT( k . _-sn)
(1 +/xt_-Ikl 2)

(1 --/xt_-Ikl _)
+ (1 + _S
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All transforms are done using Temperton FFT packages cf99F and ff99f.

Data is manipuated in the routines in fft32.f to perform the necessary
two-dimensional transforms.

SIZE size of system

ddcon2d.dat input parameters

ddcon2d, f solver

fft32, f array manipulating routines for use with the FFTs

fft99f, f, cfft99f, f Temperton FFT routines

In addition there are two IDL routines for visulaization of data:

vector, pro plays "movie" of data.

time .pro reads and plots time traces of u.

There is also a READMEfile.

1.6 Temporal Discretization

We have been discussing the solution of PDEs using spectral techniques. The

discussion till now has focused on the application of spectral methods to the

discretization of the spatial component of the PDE. The time advancement

techniques commonly employed are almost invariably finite difference. The

evaluation of the spatial operator at multiple time levels is expensive to

compute and store and temporal discretizations tend to be low-order.

The chief concerns in time advancement are that of stability and conver-

gence. To address these there exists a useful theorm due to Lax, namely,

Lax Equivalence Theorm: stability + consistency = convergence.

The stability of any numerical scheme is strongly influenced by the eigen-

value structure of the spatial discretization matrix. To see this we write

OU
-SU+Q

Ot
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Here S contains the spatial discretization, and Q are any nonhomogeneous

or boundary terms, while U is the vector of mesh point values.

The exact solution is directly determined by the eigenstructure of S.

Characteristic equation is

is - a±i= 0

If _ are the eigenvectors corresponding to ),j, implies

and

SR = RA

where

so that

n z

I )_1

)_2

)_N

]
A = R-1SR

Since _ are complete we can write (U is exact solution of equation),

N

j=l

and
N

Q= _ QjVj
j=l
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o0
Uj is obtained from Ot j - IjUj + Qj

Formally the solution will look like

QJ_]O(t) = _ Uoje;_Jt + (e ;_jt 1)
j=l

Here Uoj is the initial condition U0 = _N-1 UojVj

For O(t) to remain bounded

Re(lj) _ 0 Vj

[If ),j = 0 occurs, it better not be multiple, or it will give ,,_ te t behavior,

leading to asymptotic growth]

Thus as asserted, the eigenstructure of the spatial discretization determines

stability; if Re(Aj) > 0 no temporal discretization scheme can be made
stable.

Example

02_t
Lu--

Oz 2

with either Dirichelet [e.g. u(+l) = 0] or Neumann [e.g. u'(+l) = 0]

boundary conditions.

Using collocation with Gauss-Lobatto points (Chebyshev or Legendre) one
finds

0<_C1 <_ -A <_ C2 N4

Another example

Lu= 0---_ with u(1)=0
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Chebyshev Tau gives: Re(),) < 0 where ]),] = O(N 2) for N l"-

Legendre Tau gives: ]),] = O(N 2) for N 1"-

Collocation gives: ]),] = O(N2).

For a temporaly discretized problem,

_t n-k1 = Z(),)?.t n

z is amplification factor and will be dependent on ), because of the spatial

discretization. We would like [z[ _< 1 for a stable scheme.

Example: Leap-Frog

U n-k1 = U n-1 ___ 2Atf n

U n+l = U n-1 + 2At),u n

characteristic equation is

1
z = - + 2At),

z

For z = 6i¢ ¢ = 0, 27r gives

),At = 2 (z -- -1)
z

),At = i sin ¢

1.6.1 Some Standard Time Stepping Schemes

Leap Frog As described in the previous example,
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Sta

Im kAt

Re EAt

Figure 1: Stability region of the Leap-Frog scheme on the wave equation

U n-k1 = U n-1 ___ 2Atf n

Since stability requires Re),At = 0 and IA/Xtl< 1.

Hence suitable explicit scheme for problems with purely imaginary ),. Good

therefore for periodic advection, where eigenvalues of Fourier for o operator

are imaginary.

The scheme requires averaging, as in ddcon2d, to prevent disconnected so-
lutions on 2At.

For the diffusion operators have Re(),) > 0.

Adams Bashforth. This is a family of schemes.

Forward Euler U n+l = u n + Atf n

1]AB2 U n-kl = U n "-_ --_

At [23fn 16fn_1 + 5fn_2]AB3 u n+l = u n + -_
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AB4 At [55f n _ 59fn_1 + 37fn_2 _ 9fn_3]it rid-1 = it n -_- --_

AB2 and AB4 very popular.

region decreases with order.

Consider the AB2 scheme

or

For Adams Bashforth schemes the stability

alternatively

),At. 1)
z= 1 + ---_--(3 -- -z

),At - 2(z - 1)
3 1

z

z+ = _ 1 + +),At 9(),At)2

Consider Fourier; e ikx, ), = ik and take At --+ 0

zk = l + ikAt- l(kAt)2 +---
Z

1
Izkl = 1+ _(kAt) 4 + O(kSAt 5)

Izklt/At _ [l + l (kAt)4] t/At

e( k4At3)t
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Which represents a weak instability. Therefore integrate over a fixed time

and keep At low.

AB3 and AB4 are stable.

Adams-Moulton An implicit family of schemes.

Backwards Euler u n+l = u n + Atf n+l

At [fn+lCrank - Nicolson un+l = un + -2- + fn]

At [5fn+l fn-1]AM3 U n-kx = u n -b -_ -b 8 f n --

Backwards Euler and Crank-Nicolson are A- Stable. Crank-Nicolson is very

popular for diffusion problems. Adams-Bashforth + Crank-Nicolson for

Navier-Stokes are very common. AM3 and AM4 have larger stability region

for diffusive problems thatn AB. Weakly unstable for Fourier advection.

[m

Re

Figure 2: A-Stable region

Runge-Kutta Very useful, very common time advancement schemes.

RK2:
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= u n + aAtf n

f = af n + f(5, tn + aAt)

U n-kl = _ AV

a = -1 + 2a- 2a 2

1 Modified Euler. RK2 requires only two levels of storage.

RK4:(3 storage level version available)

RK2: Chebyshev collocation for advection

16

At_< _-7 for NJ"
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2 SPECTRAL ELEMENT METHOD

2.1 Introduction

COMPLEX

ELEMENT

GLOBAL COORDINATES

ooo,,.

ELEMENT

LOCAL COORDINATES

Figure 3: Spectral element discretization

In the Spectral-Element method the physical domain is broken up into sev-

eral elements, say K in number. Within each element a spectral represen-

tation based on N-th order interpolants is used. Spectral Element methods

are similar to p-type Finite Element methods, but differ in that they use

interpolants as trial functions.

N

_(x) = Z _(xi)hi(x)
i----0

Here hi(x) is the interpolant.

Until we return to the global coordinates we will use (x, y) to refer to the

local coordinates, making it easier to think; rather than confusing relations

with spriklings of _ and _].

Consider the one dimensional Helmholtz equation 3.

3This example is from Canuto et al.
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-Uzz + )_u= f u(±l)=0

Let there be K 1D elements. In the k-th element

=COSN, i=0,1,
k NX i ...

This is Gauss-Chebyshev-Lobatto. N is degree of polynomial.

MWR implies

K /_ (OUNOV\ Ox Ox
k=l 1

----+/_UNV dx= E fNvdx
k=l 1

where we have used f-5_xUaX°2u " = f °U°VdxoxOx , which involves the boundary
condition.

Now

where

2 _ 1Tj(xi)Tj(x )
hi(x) = -_ cicj

j=o

2 p=0_P= 1 p_0

Take v _ hj(x)

The integral leads to

N N

k k X-" Bk._ k

j=0 j=0
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Cij = Aij + ABij

s 1 l__l_T.(xi)Tm(xj)am
Aij - N2 cicj n_m=o CnCm

2 1 N 1 Tn(xi)Tm(xj)bmn

rt_m=O

amn = -= nm [ _10X "-'_'-I (n-m)�2 -- J(n+rn)/2) it + rn even

Where
k

Jo = O, Jk = -4 _ 1 fork>l
2a- 1

q=l 5t

/11 {0bnm = = 1 1
_ 1-(n+m) 2 -[- l_(n_m)2

n + m odd

n + m even

Aij is the stiffness matrix, Bij is the mass matrix.

Actually the test funtion is taken over interior nodes and formulae are more

complicated by including the boundaries. But the essentials of the method

are here,

CU = BF.

Let us do a very similar problem, Poisson's equation with Legendre polyno-

mials.

The equation is
-Uxx= f u(+l)=O
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Then again the MWR leads to

l Ou Ov / _1 -O-xx-_xdx = 1 fvdx

For Legendre recall, w(x) = 1

SO
N

f" g(x)dx= Z aig(xi)
1 i=0

K-"
A_, ai Ox Ox
k=l

K

-- = E aifk(xi)vkN(xi)
k=l

N

i=O

For continuity

1 (1 - x2)LIN(X)

hi(x) = N(N + 1)LN(xi) (x -- xi)

_ = _o÷1

and because of the homogeneous boundary conditions

u_ = UNK =0

Now take

VN = hi(xj) = (_ij

leading to
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or

K K

k k k kZ Aij j= Z Bijf 
k=l k=l

AU = BF

where

& :a 0h (x)0hJ(x)
POx P Ox P

stiffness matrix

B_ = aiSij

Here the mass matrix is diagonal. This is the advantage of using Legendre

basis over, for example, the Chebyshev basis.

2.2 Convergence Character of SEM

For N fixed K $ obtain algebraic convergence. For K fixed N $ obtain

exponential (spectral) convergence.

Clearly the advantage of SEM over FEMs is in the exponential convergence.

In practice however the location of the elements is important too.

For mesh refinement, one can either keep the order fixed and increase the

number of elements, or keep the number fixed and increase the order of the

method. Additionally one can reposition elements, keeping both K and N

fixed, or change N in different elements.

2.3 Multidimensions

For multidimensional problems, every thing follows as described for the one

dimensional case described so far. A particularly good feature is that the

expansion is in tensor product form:
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N N

_(x, y) = E E _jhi(x)hj(y)
i=O j=O

This avoids storing the entire transformation matrix. Instead recompute

when needed. The two dimensional version of the problem we have looked
at is

N

k k k k k =_-_ k k k

k=l k=l

Where A and B are as for the one-dimensional case.

Can also do mapping of curved domains into cannonical rectangular regions

via interpolation.

(x,y)_ = Z Z(x, Y)_Jhi(_)hJ(_)
i j

Equations are obviously complicated but the tensor product form is re-

tained. There are extra quadrature errors but these are of same order as

approximation errors, for smooth solutions and boundaries.

2.4 Time Splitting for Navier-Stokes

The Navier Stokes equations are:

V-u=0

m z

Ot u x ¢o Vp + V2u

The classical time splitting consists of

1. Convective step
_$ -- ,U n

-- ttn X 03
At
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2. Pressure correction step

2
u--/t

-- Vp
At

47

or

3. Viscous step

V-u =o

1 VV2P= _t (h)

( o+1

Hence in this time splitting, Helmholtz type equations abound, which is why

we have been looking at spatially discrete forms of this equation.

2.5 Memory Requirements for SEM

O(KN d) for iterative method.

0 (K_-iN 2d) for direct method.

Direct solvers have been replaced by interative solvers (e.g. preconditioned

conjugate gradient method), but may go back again.

2.6 Nonconforming SEM

Define new Mortar space that one can project onto and off of at element

edges.

Incur more (approximation) errors, but get greater flexibility, particularly
in refinement.
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CONFORMING NONCONFORMING

Figure 4: Conforming vs. nonconforming spectral element discretization

2.7 Direct Stiffness Summation

Assembly of the global matrix is required from the elemental matrices. The

contributions of the individual elements at common nodes is summed, which
in the FEM is termed direct stiffness summation.

NODE

ELEMENT

\1 j LOCALNUMBER,NG
GLOBAL NUMBERING

u2 = uI = u_

k 1(11 11)Aij = --_

Then direct stiffness sumation imples,
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A=--I
Ax

-111

I1:111
-1-1

=1

Ax

-1 1

1 -2

1

1

-2 1

1 -2

2.8 Static Condensation of Matrices

The basic strategy is to group nodes according to whether they lie in the

boundary or the interior of an element. Since most nodes are in the interior

operations involving these nodes do not require any communication accross

processors in a parallel environment.

[ AB_ (Bk)T] b_)k bGk

On the boundary

DSS DSS

k k

bGk _ (Bk)T(ck) -1 iGk

and in the interior

C k i@= iGk _B k b@

The cost estimate for a two dimensional problem is

O(k_N 2) for the boundary; and O(k2N 4) for the interior. As noted the

communication overhead for the interior points is absent and hence without
communications
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3 SPECTRAL-ELEMENT FLUX CORRECTED

TRANSPORT METHOD FOR COMPRESSIBLE

FLOWS

One deficiency in the Spectral-Element method formulated until fairly re-

cently is that of the limitation of the application to incompressible flows.

Spectral methods suffer from their poor representation of discontinuities

(Gibbs phenomena in particular, and other phase errors for discontinuities);

hence spectral element methods, which use spectral representations locally,

inherit these disadvantages. Thus compressible flows have not received much

attention, although there have been recent investigations. These new stud-

ies have focused, appropriately enough, on flux limiting type algorithms and

spectral filtering techniques [11, 29, 12, 2]. Here we describe the spectral

element method for compressible flows.

3.1 Application to Hyperbolic Conservation Laws

Consider the conservation law,

where the vector function w represents density, momentum and total energy,

while f is the flux function (giving the I-D Euler equations), i.e.

w = (p, pVx, pe), f = (pVx, PVx2 + p, pVxe + pVx).

Integrating the equation once we obtain the canonical semi-discrete flux
form:

CO----_q- (Fi+l/2 -- Fi_l/2) = O,

where it is understood that w is now a cell-averaged quantity. The quantity

F is an edge based quantity derived from the cell-averaged f; this involves a

spatial averaging procedure and hence we turn to the spatial discretization.

3.2 Spectral Element Discretization

We will be concerned with cell-averaged quantities and edge or point quan-

tities. The cell-averaged quantities are defined on the grid j for cell-centered
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quantities,

xj, j = 0, N - 1 Gauss - Chebyshev,

while the edge quantities are defined over the grid i,

rri

xi = cos _ i = 0, N Gauss - Lobatto - Chebyshev.

The i grid straddles the j grid as shown in Figure 5. Consider the spatial

'i i' i ' i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i

i i i i i i i

i i i i i i i
i i i i i i i

i

i i . i . i . .

Figure 5: The nodes for the Gauss-Chebyshev points (dashed lines), used

for the cell-averaged quantities, and the Gauss-Lobatto-Chebyshev points

(solid lines), used for edge quantities, for N = 9.

domain partitioned into K elements where in each element, indexed by k,

N

Ck(x)= Z ¢_hi(x).
i=0

Averaging over space gives,

N

Ck(x)= Z ¢_a_(x),
i=0
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where a unique (Lagrange) interpolating function hi can be found:

hi(x) = -_Z ° Tp(xdTp(x),

and correspondingly,

with cn

2_0 = 1,

and

O<i<N,

2 p0Nc_c/T_(_i(x) = -_ Z xd¢Ax), o < i < N,
z

= 1 if n ¢ 0, N and Cn = 2 otherwise. Here,

1 1

rl ---- _oL1Ul(x), ri = -_[oLiUi(x) -- oLi-2Ui-2(x)], i _ 2,

sin[(/+ 1)7c/2N]

ai = (i + 1) sin(Tc/2N)"

Ui(x) are Chebyshev polynomials of the second kind. The cell-averaging

procedure correctly converts point values defined over N + 1 points to cell-

centered average values defined over N points. Note that hi(x) is an inter-

polating polynomial, while/ti(x) is not.

Analogous to (3.2), there exists a (Lagrange) interpolant taking cell-averaged

quantities into a continuous function,

N

¢_(/) = Z _gj(x).
i=1

To recover the edge values from the cell-averaged quantities, the following

reconstruction is applied:

¢i = aj(xi)_j,
N-1 _j

where Gj(x)= E -_ppUp(x),
p=0

with

)_p = xj), p = N-2, N-I; ),_ = xj)-Tp+2(xj)], 0 _ p _ N-3

Note that the reconstruction gives only N points, but the interpolating

polynomial constructed for the collocation method requires N + 1 values.
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An additional constraint in order to uniquely determine the polynomial is to

require C O continuity across the interface of the elements so that ¢0k+l = CkN.

Hence,

where

N

(_k+l¢k+1(4)= Z j aj(4) +
j=l

k _ Ef-l¢ k+IG _ 1_j j_,-- )
(_¢k = (1 - 4)T_ (4) CN 2N 2

In (3.2,3.2) we have written (4, _1,() as the local element coordinate system.

Figure 6a shows the a sinusoid over 32 Gauss points. By use of (3.2) its cell-

averaged values 0,(x) are also shown. Figure 6b shows the reconstruction of

the function via (3.2,3.2) by plotting the error between the function and its

reconstruction. As is evident, the errors are very small.

1.0 _ _ ' _ ' 2.0,10 "6

1.0,10 "6

0.5

0

o.o i i .,.o.,o-°
-0.5

-2.0,10 "6

-1.0 ..... 3.0,10 -6

-1.0 -0.5 0.0 0.5 1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 6: (a) The function a(x) = sin27rx and its cell average, a(x), and (b)

The error in the reconstruction from 0,(x) for N=32.
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3.3 Flux Corrected Transport

The FCT procedure for solving (3.1) is as follows [1, 35, 36]:

d/
Z+ x =0,

is
At

W n+l = W n -- --_x(Fi+l/2 -- Fi_1/2).

The w are interpreted as density, momentum, and the energy; i.e. in 1D

w -- {p, pu, pE} and f - {pu, pu 2 + p, puE + pu}. The dependence of F

on f is determined by the order of the scheme (see next section). The 3D

calculation is extended analogously.

The procedure is as follows,

1. Form a low-order flux: F_+I/2.

2. Form a high-order flux: F_+I/2.

3. Form an anti-diffusive flux:

H L
Ai+l/2 = Fi+l/2 - Fi+l/2.

4. Form a low-order solution:

At .FL
= - ( i+1/2- Fi -l/2) •

5. Limit the anti-diffusive flux to prevent spurious extrema in wn+l:

C
Ai+l/2 = Ci+l/2Ai+l/2 0 < Ci+l/2 < 1.

Determination of the appropriate C is the critical and complex step.

6. Update the solution:

At .AC
wn+l : wL -- _X ( i+1/2 -- AiC-1/2) •

In the Spectral Element-FCT approach we define the cell-centered quantities

to be on the Gauss-Chebyshev points (grid j) while the fluxes are on the

Gauss-Lobatto-Chebyshev points (grid i). Step 2 above is interpreted in the

Spectral Element formulation. Fluxes are obtained via (3.2,3.2) from the

cell-centered flux function as in (3.1).
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3.4 Shock Tube Results

We solve a one-dimensional hydrodynamics problem -- the shock tube --

with parameters due to Sod [30]. At time t = 0 the gas on the left of a

diaphragm is at pressure p = 1, p = 0.1 while on the right it is at p =

1, p -- 0.125. Following the rupture of the diaphragm at t -- 0+, three waves

propagate through the gas: an expansion fan, a contact discontinuity and a

shock wave. Figure 7 shows the results obtained with the spectral-element

FCT method with N --- 21, K --- 20. While not exceptional, the method

does quite well. Some small excrescences are evident.

pressure density velocity
1.0 ; 1.0 E

0.8 F

0.6 F

0.4

0.2 _

O.OI ...................

0.0 0.5 1.0 1.5 2.0

-0.2 i .... i .... i .... i ....

0.0 0.5 1.0 1.5 2.0

Figure 7: Shock tube results. Time is 0.263, N --- 21, K --- 20. Parameter
are those due to Sod.
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4 STABILITY OF NUMERICAL SCHEMES

4.1 Von Neumann Stability Analysis

In so-called "o?' - methods for solving

O_ 02_

-_ = f(u) = UO-_x2 (13)

The discretization of time leads to

_tn+l _ ?£n

At - u[ "f(u_+l)+(1-")f(u_)]

Here if

oz=0

1

c_=l

_ // __ n+l- [_xx +(1-a)uxnx]

Forward Euler -- 1st order explicit

Crank-Nicolson 2nd order implicit

Backward Euler -- 1st order implicit

For instance,

_n+l _ _n

At
-- //OL

ai+l AX 2 -_- Un+l -- AX22un -_- UL1

Since the problem is linear, use single mode

u _ ak eikx

_xx = --ak k2eikx

Applying
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_,_x{a;+l-a_--_[-_aV1- (1-_a_]}
where

At
rz/j m

Ax 2

or

a_ +1 n
z ak

1 - r(1 - a)k 2"

1 + r(_k 2

For c_ --- 0 Forward Euler

c_ +1= a_ (1- rk2))

Stability requires

[1-rk2[-< 1

or

At 2
--1 _< u_-_x2k _<1

or

At Ax

Ax - uk 2

Ax

- uk 2

cr is the Courant number.
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For fixed a, Ax, u, Large enough k will always violate the condition. High

wave numbers or, equivalently, short wavelengths will always be unstable.

Thus forward Euler is always unstable for a diffusion type equation. Note

that the stability properties of a numerical scheme depend not only on the

scheme but also on the particular differential equation being considered.

For c_ = 1 Backwards Euler

Stability requires

1

which is true for all k, and therefore the method is stable.

1 Crank-NicolsonFor c_ =

OL_ +1

Stability requires

or

(112)- grk

= ar_ -_ ½rk 2

12 -rk2 < 1
2 -+ rk 2 -

2 - rk 2 <_ 2 + rk 2

be true for all k. Indeed this condition is satisfied for all k. However for

very large k the amplification, % --+ -1; similarly for fixed k and a J', the

amplifications tends to -1.

We note that we have used

_txx : --k2_t

Which assumes we have a spectral (Fourier) respresentation of the spatial

operator. For finite differences other cotticients will occur and for other

operators complex coefficients can occur.
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5 READING GUIDE

Introductory Reading

• Of course, The introduction to any numerical work -- [26].

Spectral Methods Ingredients

• Fast Fourier Transforms -- [33, 34].

• Numerical Integration- [19], [6].

• Chebyshev polynomials -- [27].

• General (non-spectral method specific) stability analysis -- [17].

• Direct and Iterative solvers -- [13].

Spectral Methods for PDEs

• New book on pseudospectral methods -- [10].

• The books on spectral methods -- [14, 3].

• Boundary Layers -- [31].

• Poisseulle flow -- [23].

• Channel flow -- [22].

• Rayleigh-Benard Convection -- [4, 16].

• Double-Diffusive Convection (only the Poisson eqn. solved spectrally)

--[18, 7].

• Spectral methods application to MHD -- [24, 5].

• Taylor-Couette Flow -- [32].

• Mixing Layers -- [21].

Spectral-Element Methods for PDEs

• Original paper on Spectral-Elements -- [25].

• Legendre SpectrM-Elements --[28].

• Parallel SpectrM-Elements -- [9, 8].
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• Non-conforming Spectral-Elements -- [20]

• Spectral-Elements and Finite-Difference Hybrid schemes -- [15].
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